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Abstract—This paper considers the problem of minimizing the
expected value of a (possibly nonconvex) cost function param-
eterized by a random (vector) variable, when the expectation
cannot be computed accurately (e.g., because the statistics of
the random variables are unknown and/or the computational
complexity is prohibitive). Classical stochastic gradient methods
for solving this problem may suffer from slow convergence. In
this paper, we propose a stochastic parallel Successive Convex
Approximation-based (best-response) algorithm for general non-
convex stochastic sum-utility optimization problems, which arise
naturally in the design of multi-agent networks. The proposed
novel decomposition approach enables all users to update their
optimization variables in parallel by solving a sequence of strongly
convex subproblems, one for each user. Almost sure convergence
to stationary points is proved. We then customize the algorithmic
framework to solve the stochastic sum rate maximization problem
over single-input-single-output (SISO) frequency-selective in-
terference channels, multiple-input-multiple-output (MIMO)
interference channels, and MIMO multiple-access channels.
Numerical results corroborate that the proposed algorithms can
converge faster than state-of-the-art stochastic gradient schemes
while achieving the same (or better) sum-rates.
Index Terms—Distributed algorithms, multi-agent systems, sto-

chastic optimization, successive convex approximation.

I. INTRODUCTION

W IRELESS networks are composed of multiple users that
may have different objectives and generate interference

when no orthogonal multiplexing scheme is imposed to regulate
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the transmissions; examples are peer-to-peer networks, cogni-
tive radio systems, and ad-hoc networks. A common design of
such multi-user systems is to optimize the (weighted) sum of
users’ objective functions. This formulation however requires
the knowledge of the system parameters, such as the users’
channel states. In practice this information is either difficult to
acquire (e.g., when the parameters are rapidly changing) or im-
perfect due to estimation and signaling errors. In such scenarios,
it is convenient to focus on the optimization of the long-term
performance of the network, measured in terms of the expected
value of the sum-utility function, parametrized by the random
system parameters. In this paper, we consider the frequently en-
countered difficult case that (the expected value of) the social
function is nonconvex and the expectation cannot be computed
(either numerically or in closed-form). Such a system design
naturally falls into the class of stochastic optimization problems
[2], [3].
Gradient methods for unconstrained stochastic nonconvex

optimization problems have been studied in [4]–[6], where al-
most sure convergence to stationary points has been established,
under some technical conditions; see, e.g., [5]. The extension
of these methods to constrained optimization problems is not
straightforward; in fact, the descent-based convergence anal-
ysis developed for unconstrained gradient methods no longer
applies to their projected counterpart (due to the presence of
the projection operator). Convergence of stochastic gradient
projection methods has been proved only for convex objective
functions [4], [7], [8].
To cope with nonconvexity, gradient averaging seems to be

an essential step to resemble convergence; indeed, stochastic
conditional gradient methods for nonconvex constrained prob-
lems hinge on this idea [9]–[12]: at each iteration the new update
of the variables is based on the average of the current and past
gradient samples. Under some technical conditions, the average
sample gradient eventually resembles the nominal (but unavail-
able) gradient of the (stochastic) objective function [9], [13];
convergence analysis can then be built on results from deter-
ministic nonlinear programming.
Numerical experiments for large classes of problems show

that plain gradient-like methods usually converge slowly. Some
acceleration techniques have been proposed in the literature
[8], [14], but only for strongly convex objective functions.
Here we are interested in nonconvex (constrained) stochastic
problems. Moreover, (proximal, accelerated) stochastic gra-
dient-based schemes use only the first order information of
the objective function (or its realizations); recently it was
shown [15]–[17] that for deterministic nonconvex optimization
problems exploiting the structure of the function by replacing
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its linearization with a “better” approximant can enhance em-
pirical convergence speed. In this paper we aim at bringing this
idea into the context of stochastic optimization problems.
Our main contribution is to develop a new broad algorithmic

framework for the computation of stationary solutions of a wide
class of nonconvex stochastic optimization problems, encom-
passing many multi-agent system designs of practical interest.
The essential idea underlying the proposed approach is to de-
compose the original nonconvex stochastic problem into a se-
quence of (simpler) deterministic subproblems. In this case, the
objective function is replaced by suitable chosen sample convex
approximations; the subproblems can be then solved in a par-
allel and distributed fashion across the users. Other key features
of the proposed framework are: i) it is very flexible in the choice
of the approximant of the nonconvex objective function, which
need not necessarily be its first order approximation, as in clas-
sical (proximal) gradient schemes; ii) it encompasses a gamut
of algorithms that differ in cost per iteration, communication
overhead, and convergence speed, while all converging under
the same conditions; and iii) it can be successfully used to ro-
bustify the algorithms proposed in [15] for deterministic opti-
mization problems, when only inexact estimates of the system
parameters are available, which makes them applicable to more
realistic scenarios. As illustrative examples, we customize the
proposed algorithms to some resource allocation problems in
wireless communications, namely: the sum-rate maximization
problems over MIMO Interference Channels (ICs) andMultiple
Access Channels (MACs). The resulting algorithms outperform
existing (gradient-based)methods both theoretically and numer-
ically.
The proposed decomposition technique hinges on successive

convex approximation (SCA) methods, and it is a nontrivial
generalization to stochastic (nonconvex) optimization problems
of the solution method proposed in [15] for deterministic opti-
mization problems. We remark that [15] is not applicable to sto-
chastic problems wherein the expected value of the objective
function cannot be computed analytically, which is the case for
the classes of problems studied in this paper. In fact, as shown
also numerically (cf. Section IV.D), when applied to sample
functions of stochastic optimization problems, the scheme in
[15] may either not converge or converge to limit points that
are not even stationary solutions of the stochastic optimization
problem. Finally, since the scheme proposed in this paper is sub-
stantially different from that in [15], a further contribution of
this work is establishing a new type of convergence analysis
(see Appendix A) that conciliates random and SCA strategies,
which is also of interest per se and could bring further develop-
ments.
An SCA framework for stochastic optimization problems

has also been proposed in a recent, independent submission
[18]; however the proposed method differs from [18] in many
features. Firstly, the iterative algorithm proposed in [18] is
based on a majorization minimization approach, requiring thus
that the convex approximation be a tight global upper bound
of the (sample) objective function. This requirement, which
is fundamental for the convergence of the schemes in [18], is
no longer needed in the proposed algorithm. This represents a
turning point in the design of distributed stochastic SCA-based
methods, enlarging substantially the class of (large scale)
stochastic nonconvex problems solvable using the proposed

framework. Secondly, even when the aforementioned upper
bound constraint can be met, it is not always guaranteed that
the resulting convex (sample) subproblems are decomposable
across the users, implying that a centralized implementation
might be required in [18]; the proposed schemes instead natu-
rally lead to a parallel and distributed implementation. Thirdly,
the proposed methods converge under weaker conditions than
those in [18]. Fourthly, numerical results on several test prob-
lems show that the proposed scheme outperforms [18], see
Section IV.
Finally, within the classes of approximation methods for

stochastic optimization problems, it is worth mentioning the
Sample Average Approach (SAA) [18]–[21]: the “true” (sto-
chastic) objective function is approximated by an ensemble
average. Then the resulting deterministic optimization problem
is solved by an appropriate numerical procedure. When the
original objective function is nonconvex, the resulting SSA
problem is nonconvex too, which makes the computation of its
global optimal solution at each step a difficult, if not impossible,
task. Therefore SSA-based methods are generally used to solve
stochastic convex optimization problems.
The rest of the paper is organized as follows. Section II for-

mulates the problem along with some motivating applications.
The novel stochastic decomposition framework is introduced
in Section III; customizations of the framework to some rep-
resentative applications are discussed in Section IV. Finally,
Section VI draws some conclusions.

II. PROBLEM FORMULATION

We consider the design of a multi-agent system composed of
users; each user has his own strategy vector to optimize,

which belongs to the convex feasible set . The vari-
ables of the remaining users are denoted by ,
and the joint strategy set of all users is the Cartesian product set

.
The stochastic social optimization problem is formulated as:

(1)

where , with being the number of functions;
each cost function depends on the
joint strategy vector and a random vector , defined on the
probability space , with being the sample
space, being the -algebra generated by subsets of , and
being a probability measure defined on , which need not be
known. Note that the optimization variables can be complex-
valued; in such a case, all the gradients of real-valued functions
are intended to be conjugate gradients [22], [23].
Assumptions: We make the following assumptions:
a) Each is compact and convex;
b) Each is continuously differentiable on , for any

given , and the gradient is Lipschitz continuous with con-
stant . Furthermore, the gradient of is Lips-
chitz continuous with constant .

These assumptions are quite standard and are satisfied for a large
class of problems. Note that the existence of a solution to (1) is
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guaranteed by Assumption (a). Since is not assumed to be
jointly convex in , (1) is generally nonconvex. Some instances
of (1) satisfying the above assumptions are briefly listed next.
Example #1: Consider the maximization of the ergodic sum-

rate over frequency-selective ICs:

(2)

where with being the transmit power of
user on subchannel (subcarrier) is the number of parallel
subchannels, is the total power budget, is the channel
coefficient from transmitter to receiver on subchannel , and

is the variance of the thermal noise over subchannel at
the receiver . The expectation is taken over channel coefficients

.
Example #2: The maximization of the ergodic sum-rate over

MIMO ICs also falls into the class of problems (1):

(3)

where is the covari-
ance matrix of the thermal noise (assumed to be full rank)
plus the multi-user interference, is the total power budget,
and the expectation in (3) is taken over the channels

.
Example #3: Another application of interest is the maximiza-

tion of the ergodic sum-rate over MIMO MACs:

(4)

This is a special case of (1) where the utility function is concave
in , and the expectation in (4)
is taken over the channels .
Example #4: The algorithmic framework that will be intro-

duced shortly can be successfully used also to robustify dis-
tributed iterative algorithms solving deterministic (nonconvex)
social problems, but in the presence of inexact estimates of the
system parameters. More specifically, consider for example the
following sum-cost minimization multi-agent problem:

(5)

where is uniformly convex in . An efficient
distributed algorithm converging to stationary solutions of (5)
has been recently proposed in [15]: at each iteration , given the

current iterate , every agent minimizes (w.r.t. ) the
following convexified version of the social function:

where stands for , and
. The evaluation of the above function re-

quires the exact knowledge of for all . In prac-
tice, however, only a noisy estimate of is available
[24]–[26]. In such cases, convergence of pricing-based algo-
rithms [15], [27]–[29] is no longer guaranteed. We will show
in Section IV.C that the proposed framework can be readily
applied, for example, to robustify (and make convergent), e.g.,
pricing-based schemes, such as [15], [27]–[29].
Since the class of problems (1) is in general nonconvex

(possibly NP hard [30]), the focus of this paper is to design
distributed solution methods for computing stationary solutions
(possibly local minima) of (1). The major goal is to devise
parallel (nonlinear) best-response schemes that converge even
when the expected value in (1) cannot be computed accurately
and only sample values of are available.

III. A NOVEL PARALLEL STOCHASTIC DECOMPOSITION

The social problem (1) faces two main issues: i) the non-
convexity of the objective functions; and ii) the impossibility
to estimate accurately the expected value. To deal with these
difficulties, we propose a decomposition scheme that consists
in solving a sequence of parallel strongly convex subproblems
(one for each user), where the objective function of user is ob-
tained from by replacing the expected value with a suit-
ably chosen incremental sample estimate of it and linearizing
the nonconvex part. More formally, at iteration , a random
vector is realized,1 and user solves the following problem:
given and , let

(6a)

with the surrogate function defined as

(6b)

where the pricing vector is given by

(6c)

and is an accumulation vector updated recursively according
to

(6d)

with being a sequence to be properly chosen
. Here are realizations of random vectors defined

1With slight abuse of notation, throughout the paper, we use the same symbol
to denote both the random vector and its realizations.
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Algorithm 1: Stochastic parallel decomposition algorithm

Data: ; set .

: If satisfies a suitable termination criterion: STOP.

: For all , compute (cf. (6)).

: The random vector is realized; update
according to

: For all , update according to (6d).

: , and go to .

on , at iterations respectively. The other
symbols in (6) are defined as follows:
• In (6b): is any subset of

is the set of
indices of functions that are convex in ;

• In (6c): denotes the complement of , i.e., ;
thus, it contains (at least) the indices of functions

that are nonconvex in , given and ;
• In (6c)–(6d): is the gradient of
w.r.t. (the complex conjugate of ). Note that, since

is real-valued,
.

Given is updated according to

(7)

where . Note that the iterate is a function of the
past history of the algorithm up to iteration (we omit this
dependence for notational simplicity):

Since are random vectors, and are
random vectors as well.
The subproblems (6a) have an interesting interpretation: each

user minimizes a sample convex approximation of the orig-
inal nonconvex stochastic function. The first term in (6b) pre-
serves the convex component (or part of it, if ) of the
sample social function. The second term in (6b)—the vector

—comes from the linearization of (at least) the non-
convex part. The vector in the third term represents the incre-
mental estimate of (which is not available), as one
can readily check by substituting (6c) into (6d):

(8)

Roughly speaking, the goal of this third term is to estimate
on-the-fly the unknown by its samples collected over
the iterations; based on (8), such an estimate is expected to be-
come more and more accurate as increases, provided that the
sequence is properly chosen (this statement is made rigorous
shortly in Theorem 1). The last quadratic term in (6b) is the
proximal regularization whose numerical benefits are well-un-
derstood [31].

Given (6), we define the “best-response” mapping as: given
,

(9)

Note that is well-defined for any given because the
objective function in (6) is strongly convex with constant :

(10)

The proposed decomposition scheme is formally described in
Algorithm 1, and its convergence properties are stated in The-
orem 1, under the following standard boundedness assumptions
on the instantaneous gradient errors [24], [32].
Assumption (c): The instantaneous gradient is unbiased with

bounded variance, that is, the following holds almost surely:

This assumption is readily satisfied if the random variables
are bounded and identically distributed.

Theorem 1: Given problem (1) under Assumptions (a)–(c),
suppose that in (6b) and the step-sizes and
are chosen so that

(11a)

(11b)

(11c)

(11d)

Then, every limit point of the sequence generated by Al-
gorithm 1 (at least one of such point exists) is a stationary point
of (1) almost surely.

Proof: See Appendix A.
On Assumption (c): The boundedness condition is in terms

of the conditional expectation of the (random) gradient error.
Compared with [18], Assumption (c) is weaker because in [18]
it is required that every realization of the (random) gradient error
must be bounded.
On Condition (11d): The condition has the following inter-

pretation: all increasing subsequences of must
grow slower than . We will discuss later in Section IV how
this assumption is satisfied for specific applications. Note that
if is uniformly bounded for any (which is in-
deed the case if is a bounded random vector), then (11d) is
trivially satisfied.
On Algorithm 1: To the best of our knowledge, Algorithm

1 is the first parallel best-response (e.g., nongradient-like)
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scheme for nonconvex stochastic sum-utility problems in
the form (1): all the users update in parallel their strategies
(possibly with a memory) solving a sequence of decoupled
(strongly) convex subproblems (cf. (6)). It performs empirically
better than classical stochastic gradient-based schemes at no
extra cost of signaling, because the convexity of the objective
function, if any, is better exploited. Numerical experiments
on specific applications confirm this intuition; see Section IV.
Moreover, by choosing different instances of the set in (6b),
one obtains convex subproblems that may exhibit a different
trade-off between cost per iteration and convergence speed. Fi-
nally, it is guaranteed to converge under very weak assumptions
(e.g., weaker than those in [18]) while offering some flexibility
in the choice of the free parameters (cf. Theorem 1).
Diminishing Stepsize Rules: Convergence is guaranteed if a

diminishing stepsize rule satisfying (11) is chosen. An instance
of (11) is, e.g., the following:

(12)

Roughly speaking, (11) says that the stepsizes and , while
diminishing (with decreasing faster than ), need not go to
zero too fast. This kind of stepsize rules are of the same spirit of
those used to guarantee convergence of gradient methods with
error; see [33] for more details.
Implementation Issues: In order to compute the best-re-

sponse, each user needs to know and
the pricing vector . The signaling required to acquire
this information is generally problem-dependent. If the problem
under consideration does not have any specific structure, the
most natural message-passing strategy is to communicate
directly and . However, in many specific appli-
cations significantly reduced signaling may be required; see
Section IV for some examples. Note that the signaling is of
the same spirit as that of pricing-based algorithms proposed in
the literature for the maximization of deterministic sum-utility
functions [15], [29]; no extra communication is required to
update : once the new pricing vector is available,
the recursive update (6d) for the “incremental” gradient is
based on a local accumulation register keeping track of the last
iterate . Note also that, thanks to the simultaneous nature
of the proposed scheme, the overall communication overhead is
expected to be less than that required to implement sequential
schemes, such the deterministic schemes in [29].

A. Some Special Cases

We customize next the proposed general algorithmic frame-
work to specific instances of problem (1) arising naturally in
many applications.
1) Stochastic Proximal Conditional Gradient Methods:

Quite interestingly, the proposed decomposition technique
resembles classical stochastic conditional gradient schemes [4]
when one chooses in (6b) , for all and , resulting in
the following surrogate function:

(13)

with updated according to (8). Note that traditional stochastic
conditional gradient methods [9] do not have the proximal reg-
ularization term in (13). However, it is worth mentioning that,
for some of the applications introduced in Section II, it is just
the presence of the proximal term that allows one to compute
the best-response resulting from the minimization of
(13) in closed-form; see Section IV.B.
2) Stochastic Best-Response Algorithm for Single (Convex)

Functions: Suppose that the social function in (1) is a single
function , with
convex in each (but not necessarily jointly), for any
given . This optimization problem is a special case of the
general formulation (1), with and .
Since is componentwise convex, a natural
choice for the surrogate functions is setting
for all , resulting in the following

(14)

where is updated according to
. Convergence conditions are still given by The-

orem 1. It is worth mentioning that the same choice comes out
naturally when is uniformly jointly convex;
in such a case the proposed algorithm converges (in the sense
of Theorem 1) to the global optimum of . An interesting
application of this algorithm is the maximization of the ergodic
sum-rate over MIMO MACs in (4), resulting in the first con-
vergent simultaneous stochastic MIMO Iterative Waterfilling
algorithm in the literature; see Section IV.C.
3) Stochastic Pricing Algorithms: Suppose that and

each (implying that is uniformly convex
on ). By taking each for all , the surrogate function
in (6b) reduces to

(15)

where and
. This is the generalization

of the deterministic pricing algorithms [15], [29] to stochastic
optimization problems. Examples of this class of problems are
the ergodic sum-rate maximization problem over SISO and
MIMO IC formulated in (2)–(3); see Sections IV.A and IV.B.
4) Stochastic DC Programming: A stochastic DC program-

ming problem is formulated as

(16)

where both and are uniformly convex func-
tions on for any given . A natural choice of the surrogate
functions for (16) is linearizing the concave part of the sample
sum-utility function, resulting in the following
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where and

Comparing the surrogate functions (14)–(16) with (13),
one can appreciate the potential advantage of the proposed
algorithm over classical gradient-based methods: the proposed
schemes preserves the (partial) convexity of the original sample
function while gradient-based methods use only first order
approximations. The proposed algorithmic framework is thus
of the best-response type and empirically it yields faster con-
vergence than gradient-based methods. The improvement in
the practical convergence speed will be illustrated numerically
in the next section.

IV. APPLICATIONS

In this section, we customize the proposed algorithmic frame-
work to some of the applications introduced in Section II, and
compare the resulting algorithms with both classical stochastic
gradient algorithms and state-of-the-art schemes proposed for
the specific problems under considerations. Numerical results
clearly show that the proposed algorithms compare favorably
on state-of-the-art schemes.

A. Sum-Rate Maximization Over Frequency-Selective ICs

Consider the sum-rate maximization problem over fre-
quency-selective ICs, as introduced in (2). Since the instanta-
neous rate of each user ,

is uniformly strongly concave in , a natural choice
for the surrogate function is the one in (15) wherein

is kept unchanged while
is linearized. This leads to the following best-response func-
tions

(17a)

where with

The variable is updated according to
. Note that

in (17a) can be computed in closed-form
[15]:

(18)

where

and is the Lagrange multiplier such that
, and it can be found efficiently

using a standard bisection method.
The overall stochastic pricing-based algorithm is then

given by Algorithm 1 with best-response mapping defined
in (18); convergence is guaranteed under conditions i)–iv)
in Theorem 1. Note that the theorem is trivially satisfied
using stepsizes rules as required in i)–iii) [e.g., (12)]; the
only condition that needs further consideration is condition
iv). If we can assume
without loss of generality (w.l.o.g.) that the sequence of the
Lipschitz constant is increasing mono-
tonically at a rate no slower than (we can always limit
the discussion to such a subsequence). For any , de-
fine and assume w.l.o.g. that

. Note that the Lipschitz constant is upper
bounded by the maximum eigenvalue of the augmented Hes-
sian of [34], and the maximum eigenvalue increasing
monotonically means that the channel coefficient is becoming
larger and larger (this can be verified by explicitly calculating
the augmented Hessian of ; details are omitted due to
page limit). Since

, we can
infer that the magnitude of the channel coefficient increasing
monotonically is an event of probability 0. Therefore, condition
(11d) is satisfied.
Numerical Results: We simulated a SISO frequency selective

IC under the following setting: the number of users is either five
or twenty; equal power budget and white Gaussian
noise variance are assumed for all users; the SNR
of each user is set to 10 dB; the instantaneous
parallel subchannels are generated according
to , where (generated by MATLAB command

) is fixed while is generated at each using ,
with being the noise level.
We considered in Fig. 1 the following algorithms: i) the pro-

posed stochastic best-response pricing algorithm (with
for all , and

for ). At each iteration, the users’
best-responses have a closed-form solution, see (18); ii) the sto-
chastic conditional gradient method [9] (with

, and for ). In each
iteration, a linear problem must be solved; iii) and the stochastic
gradient projection method, proposed in [26] (with and

for ). At each iteration, the
users’ updates have a closed-form solution.
Note that the stepsizes are tuned such that all algorithms can

achieve their best empirical convergence speed.
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Fig. 1. Sum-rate versus iteration in frequency-selective ICs. (a) Ergodic sum-rate versus iterations, (b) achievable sum-rate versus iterations.

In Fig. 1, for all the algorithms, we plot two merit functions
versus the iteration index, namely: i) the ergodic sum-rate,
defined as (with the expected
value estimated by the sample mean of 1000 independent
realizations); and ii) the “achievable” sum-rate, defined as

which represents the
sum-rate that is actually achieved in practice (it is the time av-
erage of the instantaneous (random) sum-rate). The experiment
shows that for “small” systems (e.g., five active users), all algo-
rithms perform quite well; the proposed scheme is just slightly
faster. However, when the number of users increases (e.g.,
from 5 to 20), all other (gradient-like) algorithms suffer from
slow convergence. Quite interestingly, the proposed scheme
demonstrates also good scalability: the convergence speed is
not notably affected by the number of users, which makes it
applicable to more realistic scenarios. The faster convergence
of proposed stochastic best-response pricing algorithm comes
from a better exploitation of partial convexity in the problem
than what more classical gradient algorithms do, which vali-
dates the main idea of this paper.

B. Sum-Rate Maximization Over MIMO ICs
In this example we customize Algorithm 1 to solve the sum-

rate maximization problem over MIMO ICs (3). Defining

and following a similar approach as in the SISO case, the best-
response of each user becomes (cf. (15)):

(19a)

where is given by

(19b)

with
and

. Then is updated by (6d), which becomes

(19c)

We can then apply Algorithm 1 based on the best-response
whose convergence is guar-

anteed if the stepsizes are chosen according to Theorem 1.
In contrast to the SISO case, the best-response in (19a) does

not have a closed-form solution. A standard option to compute
is using general-purpose solvers for strongly convex

optimization problems. By exploiting the structure of problem
(19), we propose next an efficient iterative algorithm converging
to , wherein the subproblems solved at each step
have a closed-form solution.
Second-Order Dual Method for Problem (19a): To begin

with, for notational simplicity, we rewrite (19a) in the following
general form:

(20)
where and is defined in (3). Let

be the eigenvalue/eigenvector decom-
position of , where is unitary and is diagonal
with the diagonal entries arranged in decreasing order. It can be
shown that (20) is equivalent to the following problem:

(21)

where , and . We
now partition in two blocks, its positive definite and
zero parts ( is partitioned accordingly):
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where , and and have the same dimensions.
Problem (21) can be then rewritten as:

(22)

Note that, since , by definition must belong to as
well. Using this observation and introducing the slack variable

, (22) is equivalent to

(23)

In the following we solve (23) via dual decomposition (note
that the duality gap is zero). Denoting by the matrix of multi-
pliers associated to the linear constraints , the (partial)
Lagrangian function of (23) is:

The dual problem is then

with

(24)

(25)

Problem (24) is quadratic and has a closed-form solution (see
Lemma 2 below). Similarly, if , (25) can be solved in
closed-form, up to a Lagrange multiplier which can be found
efficiently by bisection; see, e.g., ([29], Table I). In our setting,
however, in (25) is not necessarily negative definite. Never-
theless, the next lemma provides a closed-form expression of

[and ].
Lemma 2: Given (24) and (25) in the setting above, the fol-

lowing hold:
i) in (24) is given by

(26)

where denotes the projection of onto the cone
of positive semidefinite matrices, and is the multiplier
such that , which can be
found by bisection;

ii) in (25) is unique and is given by

(27)

where is the generalized eigenvalue decomposi-
tion of , and is the multiplier such
that can be found
by bisection over , with and

.
Proof: See Appendix B.

Since is unique, is differentiable, with
conjugate gradient [22]

One can then solve the dual problem using standard (proximal)
gradient-based methods; see, e.g., [34]. As a matter of fact,
is twice continuously differentiable, whose augmented Hessian
matrix [22] is given by ([34], Section 4.2.4):

with

and . Since , it follows
that and the following second-order Newton’s
method can be used to update the dual variable :

The convergence speed of the Newton’s methods is typically
fast, and, in particular, superlinear convergence rate can be
achieved when is close to ([34], Proposition 1.4.1).
As a final remark on efficient solution methods computing

, note that one can also apply the proximal condi-
tional gradient method as introduced in (13), which is based on
a fully linearization of the social function plus a proximal regu-
larization term:

(28)

where is the Lagrange multiplier that can be found efficiently
by the bisection method. Note that (28) differs from more tradi-
tional conditional stochastic gradient methods [9] by the pres-
ence of the proximal regularization, thanks to which one can
solve (28) in closed-form (cf. Lemma 2).
The above examples, (19) and (28), clearly show the flexi-

bility of the proposed scheme: choosing different instances of
the set leads to convex subproblems exhibiting a different
trade-off between cost per iteration and practical convergence
speed. Roughly speaking, when the number of iterations mat-
ters, one can opt for the approximation problem (19). On the
other hand, when the cost per iteration is the priority, one can
instead choose the approximation problem (28).
Practical Implementations: The proposed algorithm is fairly

distributed: once the pricing matrix is given, to compute
the best-response, each user only needs to locally estimate
the covariance matrix of the interference plus noise. Note that
both the computation of and the update of can
be implemented locally by each user. The estimation of the
pricing matrix requires however some signaling among



YANG et al.: A PARALLEL DECOMPOSITION METHOD FOR NONCONVEX STOCHASTIC MULTI-AGENT OPTIMIZATION PROBLEMS 2957

Fig. 2. Sum-rate versus iteration in a 50-user MIMO IC. (a) Ergodic sum-rate versus iterations, (b) achievable sum-rate versus iterations.

nearby receivers. Interestingly, the pricing expression and
thus the resulting signaling overhead necessary to compute it
coincide with [29] (where a sequential algorithm is proposed
for the deterministic maximization of the sum-rate over MIMO
ICs) and the stochastic gradient projection method in [26].
We remark that the signaling to compute (19b) is lower than
in [18], wherein signaling exchange is required twice (one in
the computation of and another in that of ; see [18] for
more details) in a single iteration to transmit among users the
auxiliary variables which are of same dimensions as .
Numerical Results: We considered the same scenario as in

the SISO case (cf. Section IV.A) with the following differences:
i) there are 50 users; ii) the channels are matrices generated ac-
cording to , where is given while is
realization dependent and generated by , with noise
level ; and iii) the number of transmit and receive an-
tennas is four. We simulate the following algorithms:
• The proposed stochastic best-response pricing algorithm
(19) (with for all ) under two stepsizes rules,
namely: Stepsize 1 (empirically optimal):
and for ; and Stepsize 2:

and for . For both
stepsize rules we set . The best-response
is computed using the second-order dual method, whose
convergence has been observed in a few iterations;

• The proposed stochastic proximal gradient method (28)
with and same stepsize as the stochastic best-re-
sponse pricing algorithm. The users’ best-responses have
a a closed-form expression;

• The stochastic conditional gradient method [9] (with
and and

for ). In each iteration, a linear problem must be
solved;

• The stochastic weighted minimum mean-square-error
(SWMMSE) method [18]. The convex subproblems to be
solved at each iteration have a closed-form solution.

Similarly to the SISO ICs case, we consider both ergodic
sum-rate and achievable sum-rate. In Fig. 2 we plot both objec-
tive functions versus the iteration index. It is clear from the fig-
ures that the proposed best-response pricing and proximal gra-

dient algorithms outperform current schemes in terms of both
convergence speed and achievable (ergodic or instantaneous)
sum-rate. Note also that the best-response pricing algorithm is
very scalable compared with the other algorithms. Finally, it is
interesting to note that the proposed stochastic proximal gra-
dient algorithm outperforms the conditional stochastic gradient
method in terms of both convergence speed and cost per itera-
tion. This is mainly due to the presence of the proximal regular-
ization term in (19a).
Note that in order to achieve a satisfactory convergence

speed, some tuning of the free parameters in the stepsize
rules is typically required for all algorithms. Comparing the
convergence behavior under two different sets of stepsize
rules, we see from Fig. 2(a) that, as expected, the proposed
best-response pricing and proximal gradient algorithms under
the faster decreasing Stepsize 2 converge slower than they do
under Stepsize 1, but the difference is relatively small and the
proposed algorithms still converge to a larger sum-rate in a
smaller number of iterations than current schemes do. Hence
this offers some extra tolerance in the stepsizes and makes the
proposed algorithms quite applicable in practice.

C. Sum-Rate Maximization Over MIMO MACs
In this example we consider the sum-rate maximization

problem over MIMOMACs, as introduced in (4). This problem
has been studied in [36] using standard convex optimization
techniques, under the assumption that the statistics of CSI are
available and the expected value of the sum-rate function in
(4) can be computed analytically. When this assumption does
not hold, we can turn to the proposed algorithm with proper
customization: Define

A natural choice for the best-response of each user in each
iteration of Algorithm 1 is (cf. (14)):

(29)
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 (b)(a)

Fig. 3. Sum-rate versus iteration in MIMO MAC. (a) Ergodic sum-rate versus iterations, (b) achievable sum-rate versus iterations.

and is updated as

while .
Note that since the instantaneous sum-rate function

is jointly concave in
for any , the ergodic sum-rate function is concave in ’s,
and thus Algorithm 1 will converge (in the sense of Theorem
1) to the global optimal solution of (4). To the best of our
knowledge, this is the first example of stochastic approxima-
tion algorithms based on best-response dynamics rather than
gradient responses.
Numerical Results: We compare the proposed best-response

method (29) (whose solution is computed using the second-
order dual method in Section IV.B) with the stochastic con-
ditional gradient method [9], and the stochastic gradient pro-
jection method [8]. System parameters (including the stepsize
rules) are set as for the MIMO IC example in Section IV.B.
In Fig. 3 we plot both the ergodic sum-rate and the achievable
sum-rate versus the iteration index. This figure clearly shows
that Algorithm 1 outperforms the conditional gradient method
and the gradient projection method in terms of convergence
speed, and the performance gap is increasing as the number
of users increases. This is because the proposed algorithm is a
best-response type scheme, which thus explores the concavity
of each user’s rate function better than what gradient methods
do. Note also that the proposed method exhibits good scalability
properties.

D. Distributed Deterministic Algorithms With Errors
The developed framework can also be used to robustify

some algorithms proposed for the deterministic counterpart
of the multi-agent optimization problem (1), when only noisy
estimates of the users’ objective functions are available. As a
specific example, we show next how to robustify the determin-
istic best-response-based pricing algorithm proposed in [15].
Consider the deterministic optimization problem introduced
in (5). The main iterate of the best-response algorithm [15] is
given by (7) but with each defined as

(30)

where . In many applications (see,
e.g., [24]–[26]), however, only a noisy estimate of is
available, denoted by . A heuristic is then to replace
in (30) the exact with its noisy estimate . The
limitation of this approach, albeit natural, is that convergence
of the resulting scheme is no longer guaranteed.
If is unbiased, i.e., [24], [25],

capitalizing on the proposed framework, we can readily deal
with estimation errors while guaranteeing convergence. In par-
ticular, it is sufficient to modify (30) as follows:

(31)

where is updated according to .
Algorithm 1 based on the best-response (31) is then guaranteed
to converge to a stationary solution of (5), in the sense specified
by Theorem 1.
As a case study, we consider next the maximization of the de-

terministic sum-rate over MIMO ICs in the presence of pricing
estimation errors:

(32)
Then (31) becomes:

(33)

where is a noisy estimate of given by (19b)2 and
is updated according to . Given

2 is always negative definite by definition [29], but may not
be so. However, it is reasonable to assume to be Hermitian.
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Fig. 4. Maximization of deterministic sum-rate over MIMO IC under noisy
parameter estimation: sum-rate versus iteration.

, the main iterate of the algorithm becomes
. Almost sure convergence to a sta-

tionary point of the deterministic optimization problem (32) is
guaranteed by Theorem 1. Note that if the channel matrices

are full column-rank, one can also set in (33) all ,
and compute (33) in closed-form (cf. Lemma 2).
Numerical Results: We consider the maximization of the

deterministic sum-rate (32) over a 5-user MIMO IC. The
other system parameters (including the stepsize rules) are
set as in the numerical example in Section IV.B. The noisy
estimate of the nominal price matrix [defined in (19b)]
is , where is firstly generated as in
Section IV.B and then only its Hermitian part is kept; the noise
level is set to 0.05. We compare the following algorithms: i)
the proposed robust pricing method—Algorithm 1 based on the
best-response defined in (33); and ii) the plain pricing method
as proposed in [15] (cf. (30)). Note that the variable update in
both algorithms has a closed-form solution. We also include as
a benchmark the sum-rate achieved by the plain pricing method
(30) when there is no estimation noise (i.e., perfect is
available). In Fig. 4 we plot the deterministic sum-rate in (32)
versus the iteration index . As expected, Fig. 4 shows that the
plain pricing method [15] is not robust to pricing estimation
errors, whereas the proposed robustification preforms well.
For instance, the rate achievable by the proposed method is
about 50% larger than that of [15], and is observed to reach the
benchmark value (achieved by the plain pricing method when
there is no estimation noise). This is due to the fact that the
proposed robustification filters out the estimation noise. Note
that the limit point generated by the proposed scheme (33) is a
stationary solution of the deterministic problem (32).

V. A MORE GENERAL SCA FRAMEWORK

The key idea behind the choice of the surrogate function
in (6) is to convexify the nonconvex part of

the sample sum-utility function via partial linearization of
. It is not difficult to show that one can gen-

eralize this idea and replace the surrogate in (6)

with a more general function. For example, one can use in
Algorithm 1 the following sample best-response function

(34)

where (cf. (6)), and
is any surrogate function satisfying the following

technical conditions:
(A1) is uniformly strongly convex and con-
tinuously differentiable on for all given and ;
(A2) is Lipschitz continuous on ;
(A3) .

All the convergence results presented so far are still valid (cf.
Theorem 1). To the best of our knowledge, this is the first SCA
framework for nonconvex stochastic optimization problems; it
offers a lot of flexibility to tailor the surrogate function to indi-
vidual problems, while guaranteeing convergence, whichmakes
it appealing for a wide range of applications.

VI. CONCLUSION
In this paper, we have proposed a novel best-response-based

solution method for general stochastic nonconvex multi-agent
optimization problems and analyzed its convergence properties.
The proposed novel decomposition enables all users to update
their optimization variables in parallel by solving a sequence of
strongly convex subproblems; which makes the algorithm very
appealing for the distributed implementation in several practical
systems. We have then customized the general framework to
solve special classes of problems and applications, including the
stochastic maximization of the sum-rate over frequency-selec-
tive ICs, MIMO ICs and MACs. Extensive experiments have
provided a solid evidence of the superiority in terms of both
achievable sum-rate and practical convergence of the proposed
schemes with respect to state-of-the-art stochastic-based algo-
rithms.

APPENDIX

A. Proof of Theorem 1
We first introduce the following two preliminary results.
Lemma 3: Given problem (1) under Assumptions (a)–(c),

suppose that the stepsizes and are chosen according
to (11). Let be the sequence generated by Algorithm 1.
Then, the following holds

Proof: This lemma is a consequence of ([10], Lemma 1).
To see this, we just need to verify that all the technical condi-
tions therein are satisfied by the problem at hand. Specifically,
Condition (a) of ([10], Lemma 1) is satisfied because ’s are
closed and bounded in view of Assumption (a). Condition (b) of
([10], Lemma 1) is exactly Assumption (c). Conditions (c)–(d)
come from the stepsize rules i)–ii) in (11) of Theorem 1. Condi-
tion (e) of ([10], Lemma 1) comes from the Lipschitz property
of from Assumption (b) and stepsize rule iii) in (11) of The-
orem 1.
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Lemma 4: Given problem (1) under Assumptions (a)–(c),
suppose that the stepsizes and are chosen according
to (11). Let be the sequence generated by Algorithm 1.
Then, there exists a constant such that

and w.p.1.
Proof: We assume w.l.o.g. that ; for notational

simplicity, we define , for and . It
follows from the first-order optimality condition that [22]

(35a)

(35b)

Setting in (35a) and in
(35b), and adding the two inequalities, we have

(36)

The first term in (36) can be lower bounded as follows:

(37a)

where in (37a) we used (8). Invoking the Lipschitz continuity
of , we can get a lower bound for (37a):

(37b)

(37c)

(37d)

where (37c) comes from the Lipschitz continuity of
, with and
, and we used the boundedness of the con-

straint set ( for some and all
) and the Lipschitz continuity of in (37d).

The second term in (36) can be bounded as:

(38)

where the inequality follows from the definition of and the
(uniformly) convexity of the functions .
Combining the inequalities (36), (37d) and (38), we have

which leads to the desired (asymptotic) Lipschitz property:

with and
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In view of Lemma 3 and (11d), it is easy to check that
w.p.1.

Proof of Theorem 1: Invoking the first-order optimality
conditions of (6), we have

which together with the convexity of
leads to

(39)

It follows from the descent lemma on that

(40)

where in the last inequality we used (39). Let us show by
contradiction that w.p.1. Suppose

with a positive probability.
Then we can find a realization such that at the same time

for all and ;
we focus next on such a realization. Using ,
the inequality (40) is equivalent to

(41)

Since , there exists a suffi-
ciently large such that

(42)

Therefore, it follows from (41) and (42) that

(43)

which, in view of , contradicts the bounded-
ness of . Therefore it must be
w.p.1.
We prove now that w.p.1.

Assume with some positive
probability. We focus next on a realization along with

, and ,
where is defined in Lemma 4. It follows from

and
that there exists a such that (with

) for infinitely many and also for
infinitely many . Therefore, one can always find an infinite
set of indexes, say , having the following properties: for any

, there exists an integer such that

(44)

Given the above bounds, the following holds: for all ,

(45)

implying that

(46)

Proceeding as in (45), we also have: for all

which leads to

(47)

where the second inequality follows from (44). It follows from
(47) that there exists a such that for sufficiently large

,

(48)

Here after we assume w.l.o.g. that (48) holds for all (in
fact one can always restrict to a proper subsequence).
We show now that (46) is in contradiction with the conver-

gence of . Invoking (40), we have: for all ,

(49)
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and for

(50)

where the last inequality follows from (44). Adding (49) and
(50) over and, for sufficiently large
(so that and

), we have

(51)

where (a) follows from
; (b) is due to (48); and in (c) we

used . Since converges, it
must be , which contradicts (46).
Therefore, it must be w.p.1.
Finally, let us prove that every limit point of the sequence

is a stationary solution of (1). Let be the limit point of
the convergent subsequence . Taking the limit of (35)
over the index set , we have

(52)

where the last equality follows from: i)
[cf. Lemma 3]; ii)

; and iii) the following

(53)

where (53) follows from the Lipschitz continuity of ,
the fact , and (11d).
Adding (52) over , we get the desired first-order

optimality condition: for all .
Therefore is a stationary point of (1).

B. Proof of Lemma 2
We prove only (27). Since (25) is a convex optimization

problem and has a nonempty interior, strong duality holds
for (25) [37]. The dual function of (25) is

(54)

where . Denote by the
optimal solution of the maximization problem in (54), for any
given feasible . It is easy to see that if ,
so is feasible if and only if , i.e.,

and is ([29], Prop. 1)

where is the generalized eigenvalue decomposi-
tion of . Invoking ([38], Corollary 28.1.1), the
uniqueness of comes from the uniqueness of that
was proved in [39].
Now we prove that . First, note that .

Based on the eigenvalue decomposition , the
following inequalities hold:

where . In other words, is upper
bounded by the optimal value of the following problem:

(55)

When , it is not difficult to verify that the optimal
variable of (55) is , and thus . We show by
discussing two complementary cases: and .
If . Since and

the primal value is also 0, there is no duality gap. From the
definition of saddle point ([37], Section 5.4), is a dual
optimal variable.
If . Assume . Then
is the optimal variable in (25) and the optimal value of (25) is

0, but this would lead to a non-zero duality gap and thus contra-
dict the optimality of . Therefore .
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